3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Основные особенности электрической системы автомобиля

Электрооборудование автомобиля. Устройство и работа. Особенности

Электрооборудование автомобиля представляет весь перечень устройств, которые вырабатывают, передают, а также потребляют электрическую энергию в машине. В целом это сложный комплекс систем, устройств и приборов, которые обеспечивают функционирование всех частей автомобиля, автоматизацию процессов, а также создают уют, комфорт и безопасность для людей.

Все главные узлы и агрегаты электрического оборудования взаимосвязаны между собой с помощью проводов. Они выступают в качестве своеобразной нервной и кровеносной системы. В одном случае по ним передается сигнал для запуска того или иного устройства, в другом случае они передают электроэнергию для питания приборов. Обрывы проводов могут привести к воспламенению или невозможности работы конкретного устройства в машине. А поломка какого-либо электрооборудования может привести к аварии, невозможности запуска автомобиля или его эксплуатации.

Виды

В качестве источников электротока выступают устройства, которые преобразуют электроэнергию. Это генератор и аккумулятор, где генератор преобразует механическую энергию в электрическую, а аккумулятор — химическую в электрическую. В качестве потребителей электрической электроэнергии выступает устройство, преобразует электроэнергию в другие виды, к примеру, движения, света, тепла. К ним можно отнести систему запуска движка, лампочки, измерительные устройства, электроприборы в виде стеклоочистителей, печки, прикуривателя, радио, кондиционера и тому подобное.

Аккумулятор используется для питания потребителей электротоком во время запуска движка, во время его низких оборотов, либо в момент, когда он отключен. Генератор питает электротоком все электрические устройства, в том числе заряжает аккумулятор. Мощность и емкость данных устройств должна отвечать аналогичным параметрам потребителей при различных режимах работы машины.

Электрооборудование автомобиля в виде потребителей энергии классифицируются на 3 составляющие:
  1. Кратковременного действия.
  2. Длительного действия.
  3. Основного действия.

К устройствам основного действия относятся устройства, которые нужны для поддержки работоспособности машины. Это устройства впрыска, запуска, управления движком, система подачи топлива, АКП, электрический усилитель и так далее.

К устройствам длительного действия относятся устройства в виде кондиционеров, освещения, безопасности, навигационной аппаратуры, противоугонных устройств, печки и тому подобное.

К устройствам кратковременного действия относятся устройства в виде систем запуска, прикуривателя, подачи сигнала, свечей накаливания и так далее.

В качестве устройств управления выступают предохранительные щитки, блоки управления и реле. Они согласуют функционирование источников и потребителей энергии. При помощи блоков управления обеспечивается контролирование потребления электроэнергии, напряжения и нагрузок на устройствах, управление обогревателями, очистителями стекол, системой освещения и так далее. Кроме проводки в бортовой системе применяются шины данных, при помощи которых соединяются электронные блоки управления.

Устройство

Аккумулятор является одним из важнейших элементов электрооборудования автомобиля. Он представляет химический источник электротока, который работает при помощи накопления и последующей отдачи энергии. Накопление и передача заряда обеспечивается переходом ряда элементов из одного состояния в другое. Главными характеристиками аккумуляторной батареи является емкость и напряжение. Его корпус выполнен из пластика, стойкой к кислоте. В нем имеется 6 секций, в которых находятся элементы, выполненные из пластин и сепараторов. Эти элементы соединяются с помощью мостиков, а корпус закрывается пластмассовой крышкой. На батарее имеются два выхода, к которым подсоединяются клеммы проводов. Аккумулятор находится в подкапотном отсеке машины.

Электрический генератор — это устройство, которое смахивает на электрический двигатель, но имеет принципиальное от него отличие. Данный элемент создает электроэнергию благодаря вращению его якоря посредством ременной передачи, получающее вращательное движение от ДВС. Генератор имеет 2 обмотки, благодаря чему обеспечивается стабилизация напряжения, которое он вырабатывает. Принцип его работы базируется на эффекте самоиндукции.

Далее необходимо выделить элементы, которые обеспечивают запуск и последующую работу ДВС, а значит и непосредственное перемещение машины.

Стартер – это своего рода электродвигатель, который совершает вращение благодаря энергии аккумуляторной батареи. Его главная цель кроется в начальном старте. Затем появляется электрическая икра, вследствие чего происходит воспламенение топлива. В результате двигатель начинает работать. Чтобы создать такую искру, используется повышающая катушка, свечи, а также распределитель искры.

Повышающая катушка выполнена из ферромагнитного сердечника с 2-мя обмотками. На одной из обмоток находится меньшее число витков, благодаря чему создается магнитное поле. Это поле создает магнитное поле на второй обмотке, но уже с более высоким напряжением. В результате при подаче напряжения на свечи создается искра.

Электрическая свеча представляет элемент, который создает искру непосредственно в цилиндре ДВС. У нее есть контакт, к которому подходит провод с высоким напряжением. На цилиндрах имеются электроды с наименьшим зазором, в которых и происходит создание искры. Между свечами и катушкой располагается распределитель, который и передает высокое напряжение непосредственно на свечу, которая должна в необходимый момент времени подать искру на цилиндр.

Система освещения используется при перемещении машины при недостаточной освещенности окружающей среды. В данную систему включены фары, задние фонари, лампочка освещения номера, лампочки освещения в салоне, отделения багажа, отсека мотора, зоны педалей и так далее.

Световая сигнализация используется с целью предупреждения других участников движения о маневрах, поворотах, заднем ходе, то есть о смене направления перемещения машины. Данная система имеет передние сигнальные лампочки, задние фонари, боковые повторители поворотов, лампы на панели приборов, выключатели, стоп-сигналы и другое электрооборудование автомобиля.

Фары необходимы для освещения окружающего пространства. В первую очередь они необходимы для освещения дороги, чтобы водитель имел представление об окружающей обстановке. Каждая машина имеет фары, которые расположены симметрично. Передние фары в большинстве случаев выполнены в одном корпусе. В нем могут находиться ряд элементов: дальний, а также ближний свет, ходовые и габаритные огни. Иногда в них даже размещаются поворотники.

Ближний свет необходим в случаях, когда наблюдается поток встречного транспорта. Его главная особенность заключается в том, что он не слепит водителей встречного транспорта, при этом хорошо освещает правую сторону дороги. Дальний свет также используется с целью освещения, но только в том случае, когда нет встречного потока. Его главная особенность в том, что этот свет выделяется своей мощностью и интенсивностью, благодаря чему он освещает пространство на довольно большое расстояние, которое находится впереди машины.

При помощи габаритных огней и поворотников водитель дает важную информацию всем участникам движения о габаритах своего автомобиля, а также планируемых остановках и изменениях направления движения. Также в машине имеется прикуриватель, могут быть розетки usb и так далее.

В зависимости от текущей комплектации машины в ней могут иметься или отсутствовать следующее электрооборудование автомобиля: системы безопасности, которые включают в себя электронатяжители ремней, автоматическую коробку с управляющей электроникой, электронные элементы помощи водителю, маршрутный компьютер, помощь при подъеме в гору, подушки безопасности и так далее.

Применение

Электрооборудование автомобиля включает множество элементов, включая различные системы, проводку, элементы питания и так далее. В первую очередь оно предназначено для производства электрической энергии и ее доставки потребителям электроэнергии. Сегодня количество элементов, которые потребляют электрическую энергию, в том числе проводов, которые необходимы для доставки, распределения и управления, возросло в разы. Общая длина проводов и их толщина могут иметь суммарную массу более 50 кг. Это очень много, учитывая то, что количество электрических устройств все время увеличивается. Имеется большая вероятность, что к 2025 году сеть проводов в машинах может достичь почти 100 кг.

Для снижения веса электрических проводов сегодня широко применяются шины, которые предают цифровые сигналы. С помощью такой архитектуры можно существенно снизить вес и количество применяемых проводов. Это приводит к тому, что удается избавиться от сотен метров проводки, в том числе снизить стоимость затрат, ведь применяемая в проводах медь стоит довольно дорого.

В будущем проводка и электрооборудование автомобиля станет еще меньше, ведь будет применяться схема с одним центральным процессором. Именно сюда будет стекаться вся информация, процессор будет контролировать все системы электрооборудования машины. Все функции будут выполняться операционной системой. Исчезнет порядка 75 управляющих блоков, которые сегодня имеют собственные программы и алгоритмы действия.

Естественно, что благодаря уменьшению управляющих блоков и числа проводов. Электрооборудование автомобиля станет на порядок легче и компактнее. Это прибавит стабильности, ведь меньшее число компонентов обеспечивает меньшее количество сбоев. Автомобиль станет подобен компьютерному устройству. К нему можно будет с легкостью подключать новые девайсы и изменять параметры существующих. В большей части случаев можно будет поменять программу, то есть загрузить обновление, чтобы убрать ошибку.

Электрика автомобиля: краткое обучение для автолюбителя

Электрический ток

Современный автомобиль не может работать без электричества. При помощи электрического тока происходит зажигание рабочей
смеси в бензиновых двигателях, пуск двигателя стартером, приводятся в действие световая и звуковая сигнализация, контрольно-измерительные
приборы, освещение и дополнительное оборудование. Кроме того, тенденции мирового автомобилестроения в последнее время направлены на все более
широкое применение электрической тяги в автомобилях (гибридные силовые установки, топливные элементы и электромобили).

Для получения электрической энергии на автомобиле устанавливают источники электрического тока- генератор и аккумуляторную батарею.
Аккумулятор используется для пуска двигателя и для питания электроприборов при неработающем двигателе. Генератор питает электрооборудование автомобиля при работающем двигателе, и, кроме того, подзаряжает аккумуляторную батарею. Генератор превращает механическую энергию от вращения коленвала в электрическую, а аккумулятор- химическую энергию в электрическую.

Генератор и аккумулятор относятся к источникам электрического тока, все остальные электроприборы автомобиля являются его потребителями. Источники и потребители электрического тока соединяются между собой с помощью проводников, в качестве которых, как правило, служит медный провод. Провод обязательно должен находиться в изоляции во избежание замыкания с другими проводниками и, как следствие, перегорания электроприборов.

Все материалы по электропроводности делятся на проводники и непроводники (изоляторы). Не вдаваясь в дебри физики, просто отметим, что в проводниках
находится большое количество свободных электронов, которые хаотично движутся. При приложении электрического напряжения к проводнику свободные электроны начинают двигаться в одном направлении, создавая электрический ток. В изоляторах же свободных электронов практически нет, поэтому и ток создавать нечем. К проводникам относится большинство металлов, уголь, водные растворы щелочей и кислот. К изоляторам- резина, пластмассы, стекло и т.п.

Замкнутая и разомкнутая цепь

Если источник тока, провода и потребители соединить между собой в замкнутый контур, то мы получим электрическую цепь, по которой потечет электрический ток. Характерной особенностью электрической цепи на автомобиле является то, что одним из проводов служит масса (металлические части кузова автомобиля), а другим проводом служат изолированные провода. Поэтому такая электрическая цепь называется однопроводной.

Читать еще:  Установка багажника на рейлинги

Между полюсами (выводами) любого источника тока существует электрическое напряжение (обозначается U), измеряемое в вольтах. Сила электрического тока (обозначается I) измеряется в амперах. Всякий проводник и потребитель создает сопротивление электрическому току (обозначается R), которое измеряется в омах. Между этими тремя величинами существует зависимость, которую выражает знаменитый закон Ома: I = U / R. Работа электрического тока, выполненная за 1 секунду, называется мощностью. Мощность измеряется в ваттах и обозначается P. Мощность можно рассчитать по формуле P = U * I. Электрический ток, проходящий через проводник, нагревает его. Количество выделяемого при этом тепла зависит от силы тока, сопротивления и времени прохождения тока.

Однопроводная электрическая цепь автомобиля

На автомобилях приборы электрооборудования питаются постоянным током. Постоянным называется ток, который движется в проводнике только
в одном направлении, в отличие от переменного тока, который движется в проводнике попеременно то в одном, то в другом направлении.
В каждом источнике постоянного тока различают два полюса: положительный (+) и отрицательный (-). Условно считают, что постоянный ток в цепи движется
от положительного полюса к отрицательному. На автомобилях отрицательный полюс источника тока соединяют с массой (если, конечно, кузов металлический).

Потребители или источники тока могут быть соединены между собой последовательно или параллельно. При последовательном соединении отрицательный полюс одного источника тока соединяют с положительным полюсом другого. В результате такого соединения общее напряжение будет равно сумме напряжений всех источников тока. При параллельном соединении источников тока соединяют между собой одноименные полюса- положительные с положительными, отрицательные с отрицательными. При таком соединении общее напряжение будет таким же, как у одного источника тока, а сила тока увеличится во столько раз, сколько источников тока соединены между собой.

При последовательном соединении потребителей весь ток проходит через каждый потребитель. Если выйдет из строя один из потребителей, обесточивается вся цепь. При параллельном соединении ток, разветвляясь, поступает к каждому потребителю отдельно. В этом случае выход из строя любого потребителя не влияет на работоспособность остальных.

Последовательное соединение источников Параллельное соединение источников

Магнетизм и электромагнетизм

Все знают, что такое магнит. Также все замечали, что магниты притягивают к себе стальные предметы не только при непосредственном соприкосновении, но
и на расстоянии, что свидетельствует о наличии вокруг них магнитного поля. Каждый магнит имеет два полюса, которые условно называют северным (N) и южным (S). При сближении одноименных полюсов двух магнитов они отталкиваются, а при сближении разноименных полюсов- притягиваются.

Магнитное поле, созданное вокруг магнитов, состоит из магнитных силовых линий, направленных от северного полюса к южному. С удалением от магнита величина магнитного поля уменьшается.

Магнитное поле вокруг проводника с током

Если через проводник пропустить электрический ток, то вокруг него создается кольцевое магнитное поле без выраженных полюсов. Если же проводник свернуть в виде спирали, то при прохождении по нему тока магнитное поле образует на концах спирали полюса- северный и южный. Если в середину такой катушки поместить стальной сердечник, то образуется электромагнит, имеющий все свойства обычного магнита (очень наглядно это показано в мультфильме “Ивашка из дворца пионеров”, где главный герой с помощью электромагнита расправляется с Кащеем Бессмертным).

Простейший электромагнит

Магнитное поле электромагнита можно увеличивать или уменьшать, изменяя силу тока или количество витков катушки. С увеличением силы тока или количества витков электромагнита увеличивается его магнитное поле.

Если проводник с током поместить в магнитное поле магнита (электромагнита), то в результате взаимодействия магнитных полей проводника и магнита проводник будет выталкиваться, т.е. электрическая энергия будет превращаться в механическую. На этом явлении основана работа электродвигателей.

Принцип работы генератора Принцип работы электродвигателя

Для превращения механической энергии в электрическую используют явление электромагнитной индукции. Если замкнутый проводник вращать в магнитном поле, то в проводнике возникает электрический ток. Величина тока зависит от длины проводника, скорости пересечения,плотности магнитного поля и угла, под которым пересекаются магнитные силовые линии. На этом явлении основана работа генератора.

Вы, конечно же обратили внимание, что картинки практически одинаковы? Не удивляйтесь, это свидетельство обратимости электрических машин. Обратимость электрических машин — одинаковое устройство преобразователей электрической энергии в механическую и механической в электрическую. Таким образом, электрические машины взаимозаменяемы: любой электродвигатель может использоваться в качестве генератора и наоборот. Приоритетная функция электрической машины определяет её конструктивные особенности, вследствие которых обратимость становится неравномерной. Говоря по-русски, электрогенератор будет работать лучше, чем используемый в качестве генератора соответствующий по размерам электродвигатель, и наоборот.

Обозначения на электрических схемах

Обозначения на схемах электрооборудования автомобиля, как правило, интуитивно понятны. Но, для общего развития, не мешает знать и некоторые специфические условные обозначения.

Обозначения на электрических схемах

Система электрооборудования автомобиля

Система электрооборудования

Э лектрооборудование автомобиля — предназначено для выработки и передачи электрической энергии потребителям различных систем и устройств автомобиля.

Устройство электрооборудования автомобиля:

  • И сточники тока;
  • П отребители тока;
  • Э лементы управления;
  • Э лектрическая проводка.

В се перечисленные элементы электрооборудования объединены в единую бортовую сеть автомобиля.

Э лектрообоурдование автомобиля можно разделить на две части цепь низкого напряжения и цепь высокого напряжения.

Ц епь низкого напряжения обеспечивает электричеством потребителей освещения и сигнализации, а также работу системы пуска.

Система пуска двигателя обеспечивает первичное проворачивание коленчатого вала и работу двигателя во время его пуска. Наиболее распространен пуск двигателя электрическим стартером. В качестве стартеров применяют высокооборотные электродвигатели постоянного тока с последовательным или смешанным возбуждением, конструктивно объединенные с шестеренным приводом. Для быстрого и конструктивного изучения устройства системы пуска двигателя воспользуйтесь схемой системы пуска.

Освещение и сигнализация – служат для освещения приборами дороги и обозначения габаритов автомобиля, сигнализации выполняемых маневров.

Контрольно-измерительные и дополнительные приборы – служат для контроля работы и управления системами автомобиля.

Ц епь высокого напряжения служит для воспламенения рабочей смеси в цилиндрах, за счет системы зажигания.

Система зажигания служит для воспламенения горючей смеси и применяется на бензиновых двигателях. Воспламенение горючей смеси происходит по мере подачи искры зажигания в цилиндры, от сюда и название система искрового зажигания . Другими словами система зажигания служит для создания тока высокого напряжения, распределения его по цилиндрам двигателя и воспламенения рабочей смеси в камере сгорания в определенные моменты. На современных автомобилях используют контактно-транзисторную и бесконтактную системы зажигания. Для более подробного изучения — устройство системы зажигания автомобиля .

В системе электрооборудования автомобиля обязательно есть источник вырабатывания тока и его потребитель. Их взаимосвязанная работа реализуется с помощью электрической проводки.

К источниками тока можно отнести: аккумуляторную батарею (АКБ) и генератор.

АКБ служит для питания потребителей низкой цепи электрическим током при неработающем двигателе, запуске двигателя, а также работе двигателя на малых оборотах.

Г енератор предназначен для подзарядки аккумуляторной батареи (АКБ) и питания всех приборов электричеством во время движения автомобиля. Поэтому генератор является основным источником электрического тока.

К элементам управления относятся щитки предохранителей, блоки реле, электронные блоки управления. Их основная задача это обеспечение согласованной работы приборов электрооборудования. На современных автомобилях используются блоки управления.

Б лок управления служит для:

  • контроль потребителей;
  • контроль напряжения;
  • регулирование нагрузки;
  • управление системой комфорта;

П отребители энергии бывают : Основные, длительные, кратковременные.

О сновные:

— электроусилитель рулевого привода;

Д ополнительные:

— система активной безопасности;

— система пассивной безопасности;

К ратковременные:

системы комфорта;

Подкатегории

Устройство контактной системы батарейного зажигания 1

Контактная система батарейного зажигания

Для создания искрового разряда между электродами свечи зажигания необходимо высокое напряжение (15000-30000 В), так как газы, находящиеся в цилиндре, не проводят ток низкого напряжения. На современных автомобильных двигателях применяют однопроводную систему соединения источников тока с потребителями. Вторым проводником электрической энергии служит масса (корпус) – все соединенные между собой металлические части автомобиля.

При однопроводной системе включения приборов электрооборудования уменьшается число проводов, упрощается техническое обслуживание и уменьшается стоимость системы. Отрицательные выводы генератора, аккумуляторной батареи и всех потребителей электроэнергии соединены с массой, а положительные изолированы от нее. В эксплуатации необходимо внимательно следить за состоянием изоляции на проводах и за их креплением, так как нарушение изоляции может привести к возникновению короткого замыкания.

Устройство контактной системы батарейного зажигания :

Схема устройства контактной системы батарейного зажигания :

а) схема ; б) положения ключа выключателя зажигания и стартера ; 1 – рычажок прерывателя ; 2 – подвижный контакт ; 3 – неподвижный контакт ; 4 — кулачок ; 5 – прерыватель низкого напряжения ; 6 — конденсатор ; 7, 14, 23 – провода ; 8 – выключатель зажигания ; 9 – добавочный резистор ; 10 – первичная обмотка ; 11 – вторичная обмотка ; 12 – катушка зажигания ; 13 — магнитопровод ; 15 – выключатель добавочного резистора ; 16 — амперметр ; 17 – аккумуляторная батарея (АКБ) ; 18 – выключатель электродом ; 19 – ротор с электродом ; 20 — распределитель ; 21, 24 – подавительные резисторы ; 25 – свеча зажигания ; 26 – ключ выключателя зажигания.

Контактная система батарейного зажигания состоит из : аккумуляторной батареи 17, катушки зажигания 12, прерывателя 5 низкого напряжения с конденсатором 6, распределителя импульсов высокого напряжения 20, свечей зажигания 25, выключателя зажигания 8, амперметра 16. Прерыватель 5 имеет два контакта : неподвижный 3 соединенный с массой и подвижный 2, расположенный на рычажке 1 и соединенный с проводом 7 с первичной обмоткой 10 катушки зажигания. В прерывателе установлен вращающийся валик с кулачком 4, при помощи которого размыкаются контакты. В системе зажигания в качестве источника электрического тока используется генератор переменного тока.

При замыкании контактов прерывателя ток от АКБ проходит по первичной обмотке катушки зажигания, создавая вокруг нее магнитное поле.

Цепь низкого напряжения следующая : положительный вывод АКБ 17 – амперметр 16 – выключатель зажигания 8 добавочный резистор 9 – первичная обмотка 10 — провод 7 – подвижный контакт 2 – неподвижный контакт 3 – масса – выключатель 18 цепи АКБ – отрицательный вывод АКБ.

Читать еще:  Замена тосола ваз-2110

При размыкании контактов прерывателя обесточивается первичная обмотка катушки зажигания и резко уменьшается магнитное поле. Магнитный поток исчезающего поля пересекает витки вторичной и первичной обмоток, при этом индуктируется электродвижущая сила (ЭДС) высокого напряжения во вторичной и ЭДС самоиндукции в первичной обмотках. Возникающие во вторичной обмотке импульсы высокого напряжения подводятся к свечам зажигания в соответствии с порядком работы цилиндров двигателя. Вращающийся ротор 19 своим электродом распределяет импульсы высокого напряжения по электродам крышки распределителя. Частота вращения ротора в 2 раза меньше частоты вращения коленчатого вала и, таким образом, совпадает с частотой вращения кулачка прерывателя.

Положение пластины ротора напротив каждого из электродов крышки распределителя соответствует разомкнутому состоянию контактов прерывателя.

Цепь высокого напряжения : вторичная обмотка 11 – провод 14 высокого напряжения – подавительный резистор 21 – электрод ротора 19 – один из электродов крышки распределителя 20 – провод 23 — подавительный резистор 24 – свеча зажигания 25 – центральный электрод свечи – боковой электрод свечи – масса – выключатель 18 цепи АКБ – отрицательный вывод АКБ 17 – положительный вывод АКБ 17 – амперметр 16 — выключатель зажигания 8 – добавочный резистор 9 – первичная обмотка 10 – вторичная обмотка катушки зажигания 12.

В первичной обмотке ток самоиндукции возникает при замыкании контактов прерывателя. Ток самоиндукции замедляет процесс исчезновения тока в первичной обмотке, нежелательно, так как при размыкании контактов увеличивается период искрообразования между ними, снижаются эффективность и надежность системы зажигания. Параллельно контактам прерывателя включен конденсатор 6. В момент размыкания цепи низкого напряжения конденсатор заряжается током самоиндукции, а затем при разомкнутых контактах разряжается через первичную обмотку.

Выключатель зажигания 8 необходим для остановки работающего двигателя размыканием первичной обмотки катушки зажигания. Он нужен и для включения зажигания перед пуском двигателя. Ключ 26 выключателя зажигания может занимать четыре положения : 0 – зажигания выключено ; 1 – зажигание включено ; 2 – включены зажигание и стартер ; 3 – подведено питание к радиоприемнику. В положении 0 ключ можно вставить и вынуть из замка зажигания. После пуска двигателя ключ выключателя зажигания переводят в положение 1.

Выключатель 18 цепи АКБ нужен для отключения батареи от массы при выполнении электротехнических работ и для остановки автомобиля на длительное время. Выключатель 18 защищает электрооборудование от короткого замыкания или от пожара при неисправной проводке, а также позволяет отключить батарею от всех потребителей электрической энергии, непосредственно не отсоединяя провода, отходящие от нее. В этом случае остается включенным аварийное освещение – плафон кабины и розетка переносной лампы.

Почему контактная система батарейного зажигания не используется на современных автомобилях?

Постепенно контактную систему батарейного зажигания вытеснили другие системы, такие как контактно транзисторная или бесконтактная системы зажигания. Этому предшествовало ряд недостатков контактной системы батарейного зажигания :

  • Быстрый износ и обгорание контактов прерывателя ;
  • Увеличение зазора между контактами прерывателя, соответственно увеличение угла опережения зажигания ;
  • Уменьшение тока в цепях низкого и высокого напряжения ;
  • Частые перебои с воспламенением рабочей смеси ;
  • Затрудненный пуск двигателя ;
  • Снижение экономичности и мощности двигателя.

Устройство автомобилей

Система электроснабжения

Общие сведения об электроснабжении автомобиля

Все элементы электрооборудования автомобиля можно разделить на две группы: источники электрического напряжения (или система электроснабжения), и потребители электрической энергии.

Система электроснабжения предназначена для питания всех электропотребителей, выполняющих функции, необходимые для нормальной работы автомобиля. Основу автомобильных систем электроснабжения составляют портативные источники электроэнергии – аккумуляторы и генераторы.

Современный автомобиль оснащен различными устройствами, использующими для своей работы электрическую энергию. Такие устройства называются электропотребителями, которые в совокупности с источниками или накопителями энергии образуют систему электрооборудования автомобиля.

Применение электрических и электронных устройств для функционирования различных систем, приборов, элементов и механизмов автомобиля очень удобно с технической точки зрения, поскольку электроэнергию можно накопить, она легко передается на расстояние, ее легко получить преобразованием других видов энергии, и, что немаловажно – без какой-либо обработки использовать по назначению.

Проблемным остается лишь вопрос накопления электроэнергии впрок, поскольку современные накопители – аккумуляторы (аккумуляторные батареи) – обладают ограниченной емкостью, и не способны обеспечивать функционирование потребителей длительное время. По этой причине автомобили оборудуются электрическими машинами — генераторами, способными преобразовывать механическую энергию в электрическую, отбирая часть механической энергии у работающего двигателя. Полученная таким образом электроэнергия используется для функционирования потребителей при работающем двигателе, а также для пополнения и поддержания необходимого запаса в аккумуляторной батарее.

Основными потребителями электроэнергии в автомобиле являются система зажигания, микропроцессорная система управления впрыском и зажиганием, система пуска двигателя, системы освещения и сигнализации, контрольно-измерительные приборы и различное дополнительное оборудование и устройства. Количество электрооборудования на автомобилях с каждым годом увеличивается, поэтому разработчикам и конструкторам приходится постоянно трудиться над усовершенствованием системы электроснабжения.

Как правило, для питания приборов электрооборудования автомобилей используется электрический ток постоянного напряжения 12 или 24 В. В автомобилях используется параллельное подключение приборов, а поскольку основные элементы автомобиля изготовлены из металла, являющегося хорошим проводником тока, как правило, системы электрооборудования составляются по однопроводной схеме. Вторым проводом в этом случае является металлические детали автомобиля, т. е. его корпус или так называемая «масса».

Для описания работы электрооборудования используется электрическая принципиальная схема (рис. 1.1, а), которая дает полное представление о взаимодействии всех ее элементов и облегчает поиск неисправностей. Главные питающие цепи в принципиальной электрической схеме располагаются горизонтально, а потребители электроэнергии – между ними и «массой» автомобиля.

Схема соединений (рис. 1) показывает действительное расположение элементов электрооборудования на автомобиле и фактическое подключение их в бортовую сеть автомобиля с указанием выхода из пучка каждого провода, расположения переходных колодок, элементов защиты цепи и т. д.

Как правило, к «массе» автомобиля подсоединены отрицательные выводы электросети.

Источниками электроэнергии на автомобиле являются генератор и аккумуляторная батарея, которые включаются параллельно друг другу.

При работающем двигателе генератор является основным источником электроэнергии и обеспечивает электроснабжение потребителей и подзарядку аккумуляторной батареи. При неработающем двигателе функция источника электроэнергии переходит к аккумуляторной батарее, которая также должна обеспечивать надежный пуск двигателя.

Поскольку автомобильные генераторы работают в режимах переменных частот вращения и нагрузок, изменяющихся в широких пределах, для автоматического поддержания электрического напряжения на заданном уровне применяют различные регуляторы напряжения.

Maksim0203 › Блог › Электрический автомобиль

Электрический автомобиль, хотим мы этого или нет, является безусловным и неотвратимым будущим автомобилестроения, при этом будущим ближайшим. Многие производители по всему миру вкладывают значительные средства в разработку электромобилей, чему способствует неуклонный рост цен на нефтепродукты, необходимость снижения вредных выбросов от автомобиля, а также разработки устройств хранения энергии, технологий энергопотребления.

В настоящее время крупнейшими рынками электрических автомобилей являются США, Япония, Китай и ряд европейских стран (Франция, Нидерланды, Норвегия, Германия, Великобритания). Из производителей электрокаров выделяются компании Nissan (Leaf), Mitsubishi (I MiEV), Toyota (RAV4EV), Honda (FitEV), Ford (Focus Electric), Tesla (Roadster и Model S), Renault (Fluence Z.E. и ZOE), BMW (Active C), Volvo (C30 Electric). Наша страна пока находится в стороне и от производства и от потребления электромобилей, за исключением разработок отдельных энтузиастов (известная Lada Ellada не в счет, она построена на импортных комплектующих).

Под термином «электрический автомобиль» или «электромобиль» понимается транспортное средство, которое приводится в движение одним или несколькими электрическими двигателями. При этом питание электромотора может осуществляться от аккумуляторной батареи, солнечной батареи или топливных элементов. Наибольшее распространение получила конструкция электромобиля с питанием от аккумуляторной батареи.

Аккумуляторная батарея требует регулярной зарядки, которая может осуществляться от внешних источников тока, путем рекуперации энергии торможения, а также от генератора на борту электромобиля. Генератор приводится от двигателя внутреннего сгорания, но такая схема, по сути, электромобилем уже не является, а относится к одной из разновидностей гибридного автомобиля.


Устройство электрического автомобиля
В отличие от автомобиля с двигателем внутреннего сгорания электромобиль имеет более простую конструкцию, включающую минимальное количество движущихся частей, а значит более надежную.
Основными конструктивными элементами электрического автомобиля являются: аккумуляторная батарея, электродвигатель, трансмиссия, бортовое зарядное устройство, инвертор, преобразователь постоянного тока, электронная система управления.

Тяговая аккумуляторная батарея обеспечивает питание электродвигателя. На электромобиле, в основном, используются литий-ионная аккумуляторная батарея, которая состоит из ряда соединенных последовательно модулей. На выходе аккумуляторной батареи снимается напряжение постоянного тока порядка 300В. Емкость батареи должна соответствовать мощности электродвигателя.

Одним из основных элементов электромобиля является электродвигатель, который служит для создания необходимого для движения крутящего момента. В качестве тягового электродвигателя используют трехфазные синхронные (асинхронные) электрические машины переменного тока мощностью от 15 до 200 и более кВт. В сравнении с ДВС электродвигатель имеет высокую эффективность и меньшие потери энергии. КПД электродвигателя составляет 90% против 25% у ДВС.

Основными преимуществами электродвигателя являются:
— реализация максимального крутящего момента во всем диапазоне скоростей;
— возможность работы в двух направлениях без дополнительных устройств;
— простота конструкции, воздушное охлаждение;
— возможность работы в режиме генератора.

В ряде конструкций электромобилей используется несколько электродвигателей, которые приводят отдельные колеса, что значительно повышают тяговую мощность транспортного средства. Электродвигатель может быть помещен непосредственно в колесо автомобиля, сокращая до минимума трансмиссию. Но такая схема электромобиля увеличивает неподрессоренные массы и ухудшает управляемость.

Трансмиссия электромобиля достаточно проста и на большинстве моделей представлена одноступенчатым зубчатым редуктором. Бортовое зарядное устройство позволяет заряжать аккумуляторную батарею от бытовой электрической сети. Инвертор преобразует высокое напряжение постоянного тока аккумуляторной батареи в трехфазное напряжение переменного тока, необходимое для питания электродвигателя.

Преобразователь постоянного тока обеспечивает зарядку дополнительной двенадцативольтовой аккумуляторной батареи, которая используется для питания различных потребителей электроэнергии (электроусилитель рулевого управления, электрический отопитель салона, кондиционер, система освещения, стеклоочистители, аудиосистема и др.)

Электронная система управления выполняет в электрическом автомобиле несколько функций, направленных на обеспечение безопасности, энергосбережение и комфорт пассажиров:

— управление высоким напряжением;
— регулирование тяги;
— обеспечение оптимального режима движения;
— управление плавным ускорением;
— оценка заряда аккумуляторной батареи;
— управление рекуперативным торможением;
— контроль использования энергии.

Читать еще:  Что чаще всего ломается в авто – вечный вопрос

Конструктивно система объединяет ряд входных датчиков, блок управления и исполнительные устройства различных систем электромобиля. Входные датчики оценивают положение педали газа, педали тормоза, селектора переключения передач, давление в тормозной системе, степень заряда аккумуляторной батареи. На основании сигналов датчиков блок управления обеспечивает оптимальное для конкретных условий движение электромобиля. Основные параметры работы электромобиля (потребление энергии, восстановление энергии, остаточный заряд аккумуляторной батареи) визуально отображаются на панели приборов.Эксплуатация электромобиля
Несмотря на внешнее сходство и аналогичные органы управления, эксплуатация электромобиля существенным образом отличается от эксплуатации автомобиля с двигателем внутреннего сгорания. Именно эксплуатационные проблемы сдерживают массовое использование электромобиля, среди которых:

— высокая стоимость;
— ограниченная автономность;
— значительное время заряда аккумуляторов.

Высокую стоимость автомобиля во многом определяет цена аккумуляторной батареи. Несмотря на отличные эксплуатационные характеристики, литий-ионная аккумуляторная батарея очень дорогая в производстве и помимо этого имеет ограниченный ресурс (5-7 лет). Это заставляет разрабатывать новые источники тока (топливные элементы), способы хранения энергии (суперконденсаторы, маховики), совершенствовать конструкцию тяговых аккумуляторных батарей (литий-полимерные аккумуляторы).

Текущие расходы на содержание электрического автомобиля значительно ниже (в 3-4 раза) расходов на содержание автомобиля с ДВС и зависят, в основном, от стоимости электроэнергии. Эксплуатация электромобиля экономически выгодна в странах, где производство электроэнергии в меньшей степени зависит от ископаемого топлива.

Одна из самых серьезных проблем эксплуатации электромобиля его невысокая степень автономности. Величина пробега электромобиля без подзарядки зависит от многих факторов: емкости аккумуляторной батареи, характера и условий движения, стиля вождения, степени использования вспомогательных систем. В настоящее время средняя дальность использования электромобиля составляет порядка 150 км при скорости движения 70 км/ч. При движении с большей скоростью, пробег резко уменьшается, например, при скорости 130 км/ч (нормальная шоссейная скорость) он составляет уже 70 км. Именно поэтому электромобиль в большинстве своем позиционируется как транспортное средство для городских поездок.

Современные технологии позволяют увеличить степень автономности электромобиля до 300 и более км, среди которых следует отметить систему рекуперативного торможения (возвращает до 30% затрачиваемой энергии), аккумуляторы повышенной емкости, электронная оптимизация процессов движения.

Неотъемлемым атрибутом эксплуатации электромобиля является необходимость периодической зарядки аккумуляторной батареи, которая занимает много времени. Решение данной проблемы реализуется по нескольким направлениям:

нормальная зарядка аккумуляторной батареи (осуществляется от бытовой электрической сети мощностью 3-3,5 кВт, предполагает установку на электромобиле специального зарядного устройства, продолжительность до полной зарядки батареи составляет 8 часов);
ускоренная зарядка аккумуляторной батареи (производится на специальных станциях мощностью до 50 кВт, — — продолжительность зарядки до 80% емкости батареи составляет 30 минут);
замена разряженной аккумуляторной батареи на заряженную батарею (выполняется автоматически на специальных обменных станциях).

Реализация указанных направлений требует развития инфраструктуры (зарядных и обменных станций, мест парковки), стандартизации технических решений, разработки правил для поставщиков услуг.

Системы электрооборудование автомобилей. Состав, назначение функциональных устройств

Лекция 1

Чебоксары 2011

Электрооборудования автомобилей и тракторов

Кузин Н. П.

(конспект лекций)

Электрооборудование современного автомобиля и трактора можно подразделить на системы электроснабжения, электрического пуска, зажигания, освещения, контроля, комфорта и на системы, обеспечивающие безопасность движения и оптимизацию рабочих процессов. Система – группа взаимосвязанных устройств, выполняющих общую задачу.

Система электроснабжения, предназначена для снабжения электрической энергией потребителей и состоит:

1. генератора, который обеспечивает электроэнергией потребителей и заряд аккумуляторной батареи при работающем двигателе;

2. аккумуляторной батареи, которая обеспечивает электроэнергией потребителей при неработающем двигателе;

3. регулятора напряжения, который предназначен для поддержания постоянного напряжения генератора;

4. выпрямителя, который преобразует переменный ток в постоянный.

Система электростартерного пуска двигателя, предназначена для принудительного вращения коленчатого вала двигателя и состоит:

1. аккумуляторной батареи;

3. реле управления;

4. средств облекчения пуска.

Система зажигания, предназначена для обеспечения искрообразования в цилиндре в конце фазы сжатия и, воспламенять сжатый объем воздушно-топливной смеси, состоит:

1. датчика оборотов коленчатого вала;

2. датчика разряжения в коллекторе;

3. регулятора момента зажигания;

5. накопителя энергии (катушка зажигания),

7. свечей зажигания.

Система освещения, световой и звуковой сигнализациипредназначена для освещения дорги, определения габаритов автомобиля, сигнализации маневра, освещения номерного знака, кабины, комбинации приборов и т. д. и состоит:

1. фар головного освещения и противотуманных фонарей;

2. свтосигнальных приборов;

3. габаритных, стояночных, и т.д. фонарей;

4. указателей поворота;

5. звуковой сигнализации;

6. реле управления.

Система электронного управления двигателем автомобиля предназначена для точного определения момента зажигания, улучшения запуска, снижение потребления топлива и вредных выбросов и т. д. и состоит:

1. датчиков оборотов коленвала, нагрузки, детонации, температуры, воздушного потока, и т. д.;

2. блока управления, в котором установлена программа и значения установочных данных;

3. исполнительных устройств коммутатоа, топливного инжектора, топливного насоса, привода оборотами холостого хода и т. д.

Система информации и контроля технического состояния автомобиля,предназначена для сбора, обработки, хранения и отображения информации о режиме движения и техническом состоянии автомобиля и состоит:

1. датчиков состояния;

2. комбинация контрольно-измерительных приборов;

3. бортовой системы контроля (БСК) и т. д.

Система электропривода вспомогательного электрооборудования, предназначена для обеспечения отопления, вентиляцию кабины, очистку стекол, и т. д. и состоит:

2. передаточных механизмов;

3. реле управления.

Не все перечисленные системы окончательно сформировались. Одни достигли определенной степени совершенства, другие находятся в стадии формирования.

Условия эксплуатации автотракторного электрооборудования. Основные технические требования

Условия работы автотракторного электрооборудования определяются, прежде всего, условиями эксплуатации, а также местом установки отдельных агрегатов электрооборудования. Современное автотракторное электрооборудование эксплуатируется в разных климатических зонах. В зависимости от климатических условий эксплуатации изделия автотракторного электрооборудования и приборы выпу­скаются в следующих исполнениях:

1. для умеренного климата (У);

2. для холодного климата (ХЛ);

3. общеклиматического исполнения (О);

4. для тропического климата (Т).

Условия эксплуатации элементов электрооборудования испол­нений У, ХЛ и Т приведены в табл. 2.1.

Температура и атмосферные условияУХЛТ
Макс. температура окруж. Среды С: подкапотное пространство; в кабине или снаружи.100, 125
Мин. температура окруж. Среды С: подкапотное пространство; в кабине или снаружи.-40 -50-40 -60-20 -45
Относительная влажность воздуха при t 40 С, %

Электрооборудование должно сохранять работоспособность после воздействия температуры -60 0 С для исполнения ХЛ и -45 0 С для исполнения У и Т во время хранения.

При низких температурах, например, сни­жается емкость аккумуляторных батарей и механическая проч­ность электрической изоляции; при высоких снижается надежность работы электронных систем, сокра­щается срок службы аккумуляторных батарей.

Электрооборудование во время эксплуатации подвергается воздействию вибрационных перегрузок. Например, вибрация приборов, установленных на двигателе, может дости­гать 10 — 15 дБ.

Децибел — это безразмерная единица, применяемая для измерения отношения некоторых величин — «энергетических» (мощности, энергии, плотности потока мощности и т. п.) или «силовых» (силы тока, напряжения и т. п.). Децибел — это относительная величина.

Динамические перегрузки, воздействующие на элементы электрооборудования, нарушают нормальный ре­жим их работы, снижают прочность, увеличивают износ, что может привести к их повреждению или разру­шению.

Элементы автотракторного электрооборудования должны выдерживать без повреждений, и поломок воздействия вибрационных и ударных нагру­зок, которые указаны в табл. 2.2

Место установкиВид нагрузкиЧастота, ГцМакс. ускорение, м/с 2Продолжи тельность
Подкапотное пространствовибрация; удары.50 -250(10 g, g = 9,8 м/сек 2 )8 ч 100 ударов
В кабине или снаружи.вибрация; удары.8 ч 1000 ударов

В процессе эксплуатации на элементы электрооборудования попадает грязь, масло, пыль, вода содержащая соли, топливо. Это вызывает снижение электрической прочности, старение изоляции и коррозию металлических поверхностей элементов электрооборудования. Защита от коррозии осуществляется лакокрасочными, химическими, гальваническими покрытиями. Выбор вида защитного покрытия производят в соответствии с назначением детали, узла или изделия с учетом четом их конструктивных особенностей. Изделия автотракторного электрооборудования должны быть защищены от попадания посторонних предметов, вредных отложений и воды.

Изделия электрооборудования должны быть совместимы между собой и внешней средой и сохранять работоспособность в условиях электромагнитного воздействия.

Основные технические требования, предъявляемые к автотракторному электрооборудованию

Потребители электроэнергии на автомобилях или тракторах должны функционировать при изменении подводимого напряже­ния от 0,9 до 1,25 от установленного для них номинального на­пряжения.

Номинальные данные изделий электрооборудования измеряют при номинальном напряжении. Номинальная мощность, номи­нальный ток и другие величины соответствуют работе электро­оборудования при температуре 25 ± 10°С, относительной влажности 45 — 80% и атмосферном давлении (8,7 — 10,6) 10 4 Па.

Все элементы автотракторного электрооборудования должны без повреждения изоляции выдерживать испытание на электриче­скую прочность изоляции обмоток и токоведущих деталей относи­ло корпуса. Изоляция обмоток и токоведущих элементов относительно корпуса должна выдерживать без повреждений в течение 1 мин воздействие испытательного напряжения 550 В частотой 50 Гц.

Многие элементы электрооборудования, например аппараты системы зажигания, генераторы, регуляторы и др., в процессе работы на автомобиле излучают электромагнитные волны, т. е. являются источниками интенсивных радиопомех. Радиопомехи ухудшают работу телевизионных и радиоприемных устройств, расположенных на автомобиле или вблизи него. Уровень радиопомех от излучаемых электрооборудованием не должен превышать величины, предусмотренной общесоюзными кормами допустимых индустриальных радиопомех. Передача электромагнитной энергии от источника к приемнику происходит, одним из следующих способов:

1. через проводимость (электрический ток);

2. через индуктивность (магнитное поле);

3. через емкостную связь (электрическое поле);

4. через излучение (электромагнитное поле).

Съемные детали и узлы, поставляемые в запасные части, должны быть взаимозаменяемы. С точки зрения технологичности конструк­ция изделий и приборов электрооборудования должна удовлетво­рять требованиям крупносерийного и массового производства при минимальной затрате труда и материалов.

Изделия и приборы должны иметь минимальную себестоимость и трудоемкость в экс­плуатации.

Срок службы изделий и приборов электрооборудования уста­навливается в стандартах на отдельные виды электрооборудова­ния. Срок службы изделий электрооборудования измеряется про­бегом автомобиля в километрах или числом моточасов работы двигателя. Например, по техническим требованиям на генераторы переменного тока и транзисторные регуляторы напряжения уста­новлен срок службы не менее 300 тыс. км пробега автомобиля.

Дата добавления: 2014-01-07 ; Просмотров: 5695 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Ссылка на основную публикацию
Adblock
detector